Aggressive Online Learning of Structured Classifiers
نویسندگان
چکیده
We present a unified framework for online learning of structured classifiers that handles a wide family of convex loss functions, properly including CRFs, structured SVMs, and the structured perceptron. We introduce a new aggressive online algorithm that optimizes any loss in this family. For the structured hinge loss, this algorithm reduces to 1-best MIRA; in general, it can be regarded as a dual coordinate ascent algorithm. The approximate inference scenario is also addressed. Our experiments on two NLP problems show that the algorithm converges to accurate models at least as fast as stochastic gradient descent, without the need to specify any learning rate parameter.
منابع مشابه
Learning Structured Classifiers with Dual Coordinate Ascent
We present a unified framework for online learning of structured classifiers that handles a wide family of convex loss functions, properly including CRFs, structured SVMs, and the structured perceptron. We introduce a new aggressive online algorithm that optimizes any loss in this family. For the structured hinge loss, this algorithm reduces to 1-best MIRA; in general, it can be regarded as a d...
متن کاملLearning Structured Classifiers with Dual Coordinate Descent
We present a unified framework for online learning of structured classifiers. This framework handles a wide family of convex loss functions that includes as particular cases CRFs, structured SVMs, and the structured perceptron. We introduce a new aggressive online algorithm that optimizes any loss in this family; for the structured hinge loss, this algorithm reduces to 1-best MIRA; in general, ...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملInvestigating university students' views on online learning
Online learning is a concept that has received attention due to new technologies in the field of education; But today, due to the sudden spread of the corona virus, online learning has become common, so that most of the higher education institutions organize online learning courses. However, for many students, especially new undergraduate students who are used to the traditional learning enviro...
متن کاملBudget Online Multiple Kernel Learning
Online learning with multiple kernels has gained increasing interests in recent years and found many applications. For classification tasks, Online Multiple Kernel Classification (OMKC), which learns a kernel based classifier by seeking the optimal linear combination of a pool of single kernel classifiers in an online fashion, achieves superior accuracy and enjoys great flexibility compared wit...
متن کامل